The Goldbach conjecture resulting from global-local cuspidal representations and deformations of Galois representations
نویسنده
چکیده
In the basic general frame of the Langlands global program, a local p -adic elliptic semimodule corresponding to a local (left) cuspidal form is constructed from it global equivalent covered by p roots. In the same context, global and local bilinear deformations of Galois representations inducing the invariance of their respective residue fields are introduced as well as global and local bilinear quantum deformations leaving invariant the orders of the inertia subgroups. More particularly, the inverse quantum deformation of a closed curve responsible for its splitting directly leads to the Goldbach conjecture. Mathematics subject classification (2000): 11F03, 11P32, 11R37, 14B12.
منابع مشابه
Deformation of Outer Representations of Galois Group II
This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...
متن کاملDeformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملDeformations of Polarized Automorphic Galois Representations and Adjoint Selmer Groups
We prove the vanishing of the geometric Bloch–Kato Selmer group for the adjoint representation of a Galois representation associated to regular algebraic polarized cuspidal automorphic representations under an assumption on the residual image. Using this, we deduce that the localization and completion of a certain universal deformation ring for the residual representation at the characteristic ...
متن کاملA note on the Global Langlands Conjecture Erez
The theory of base change is used to give some new examples of the Global Langlands Conjecture. The Galois representations involved have solvable image and are not monomial, although some multiple of them in the Grothendieck group is monomial. Thus, it gives nothing new about Artin's Conjecture itself. An application is given to a question which arises in studying multiplicities of cuspidal rep...
متن کاملON l-ADIC FAMILIES OF CUSPIDAL REPRESENTATIONS OF GL2(Qp)
We compute the universal deformations of cuspidal representations π of GL2(F ) over Fl, where F is a local field of residue characteristic p and l is an odd prime different from p. When π is supercuspidal there is an irreducible, two dimensional representation ρ of GF that corresponds to π via the mod l local Langlands correspondence of [Vi2]; we show that there is a natural isomorphism between...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008